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The Rayleigh problem for a slightly diffusive 
density-stratified fluid 

By R. G. STANDING 
Department of the Mechanics of Fluids, 

University of Manchester 

(Received 17 August 1970 and in revised form 14 March 1971) 

A doubly-infinite sloping flat plate, initially at  rest in a slightly diffusive viscous 
density-stratified fluid, starts to move impulsively with a constant velocity 
along the line of greatest slope. The resulting flow is found to be an unsteady 
motion superimposed on a steady diffusion-induced flow, which is present 
throughout. Laplace transform methods give solutions which are valid either in 
an essentially non-diffusive outer layer or in a diffusive inner layer. The impulsive 
start sets up oscillations in the outer layer. These gradually die out, and a steady 
diffusive flow develops. 

A glass plate was towed vertically through stratified brine, into which alumi- 
nium particles were introduced. The flow velocities deduced from the particle 
motions confirmed the theoretical predictions. 

~ ~ ~~ 

1. Introduction 
This simple problem illustrates some of the physical processes which affect 

transient and oscillatory viscous boundary-layer flows on bodies moving slowly 
through density-stratified fluids. It shows how molecular diffusion affects the 
flow when the diffusion coefficient is small. 

Existing work on boundary-layer flows in viscous density-stratified fluids 
includes several studies of steady two-dimensional boundary layers on a hori- 
zontal finite flat plate. Martin & Long (1968) and Pao (1968) obtained similarity 
solutions which describe the flow near the plate and in its upstream wake when 
the diffusion coefficient is small. Pao also presented flow velocity profiles obtained 
experimentally. Brown (1968) used a Wiener-Hopf technique 60 obtain a 
solution valid near the leading and trailing edges of the plate. Kelly & Redekopp 
(1970) investigated the conditions under which an upstream wake flow occurs; 
otherwise there is a Blasius type of flow with no upstream influence. Redekopp 
(1970) discussed the effects of molecular and thermal diffusion. 

Dore (1969) used Laplace transform methods to study the flow generated when 
an initially stationary vertical flat plate starts to oscillate at  a constant fre- 
quency in a viscous non-diffusive density-stratified fluid. He obtained the 
Laplace transform of the flow velocity, described an appropriate inversion 
contour, and obtained the periodic solution valid at  large times. 

The Rayleigh problem in a density-stratified fluid is solved here by using 
Laplace transform and matching techniques. The undisturbed fluid has a 
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constant stable vertical density gradient produced by varying the solute con 
centration. A doubly-infinite sloping flat plate, initially a t  resb in the fluid, starts 
to move impulsively with a constant velocity U along the line of greatesti slope. 
The resulting flow is seen to be an unsteady motion, in which fluid velocities 
are proportional to U ,  superimposed on a steady diffusion-induced flow of 
the type discussed by Wunsch (1970) and Phillips (1970). There can be no state 
of rest in a stratified fluid above a sloping infinite plate. Even when the plate 
is at  rest a slow steady flow maintains the zero normal density gradient at the 
plabe. 

The inverse Schmidt number e is usually very small in a fluid which is stratified 
by a gradient of solute concentration. In  such a fluid, where E 4 1, molecular dif- 
fusion affects the motion in a thin layer close to the plate. The solution may be 
expanded as a series in powers of €4 in an essentially non-diffusive outer layer. By 
neglecting powers of €4 above the lowest, and tierms exponentially small when 
E < 1, an outer non-diffusive solution is found. The exponentially small terms 
behave singularly in a thin inner layer, where an inner diffusive solution is found. 
The impulsive start sets up oscillations in Che outer layer, which gradually die out. 
A steady flow develops, in which molecular diffusion disperses solute convected 
with the plate, and viscous and buoyancy forces alone determine the motion. 

A glass plate was towed vertically through a tank of stably-stratified brine 
with a constant density gradient. The results of this experiment are presented in 
$5. Fluid motions were deduced from the movement of aluminium dust in sus- 
pension in the tank. Measured flow velocities and displacements compared 
favourably with the theoretical predictions. 

2. The equations of motion 
The positive x and y directions are taken along and at  right angles to the line of 

greatest slope of a doubly-infinite sloping flat plate, and make angles a: and 
a: - +T respectively with the upwards vertical (figure 1) .  The half-space y > 0 is 
filled with an incompressible fluid, whose undisturbed background density is 

po = jj-Kzcosa-Kysina, 

where p is the density at  the origin of the co-ordinates, and K > 0 is the undis- 
turbed vertical density gradienti, assumed to be constanti. The fluid velocity q has 
components u and z1 in the z and y directions respectively, and time t is measured 
from the impulsive start at  t = 0. Variations in solute concentration c are small 
enough to ensure that v, the kinematic viscosity, and 9, the molecular diffusivity, 
are constant. The equations of motion are 

1 
-=  Dq --vp-g+vv2q, 
Dt P 

DclDt = 9 V % ,  

v.q = 0, 

wherep is the fluid density, p is the pressure, D/Dt = (a /at )  +u(a/ax) + v(a/ay), and 
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V2 = a2/az2 + a2/ay2. The density of the fluid is assumed to depend linearly on the 
concentration of solute: 

P = P ( l +  YC), 

where y is a constant. It is assumed that the Boussinesq approximation is valid, 
and that the stratification scale height L and cosa are large enough (condition 
( 2 . 5 ) )  to make the flow one-dimensional. Then q and p - p o  are independent of z, 
v = 0 and ap/ax = -pog cosa. The equations of motion become 

where f = p-po. Equations (2 .1)  also describe the flow set; up by a flat plate 
which starts to  oscillate at a constant frequency (Dore 1969). 

FIQTJRE 1. The co-ordinate system for flow over an infinite sloping flat plate. 

No solute can cross the plane y = 0;  thus 

acpy = 0 at y = 0. 

Also (p-pO)+O, u - t O  as y + m .  

These conditions may be written 

I af]ay = K sin a at y = 0 for all t ,  
f + O ,  u+O as y+oo forrtllt. 

The impulsive start provides further conditions a t  y = 0: 

u=O for t < O ,  u = U  for t > O .  

( 2 . 2 ~ )  

(2.2b) 
43-2 
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variables are defined bv 
When cos a =+ 0 the equations may be transformed as follows. Dimensionless 

wocosa 
t' = wotcosa, yl = y (--) , 

U' = u ~ U ,  f '  = w0 f IKU, 
where the Brunt-Vaisala frequency wo = (Kg/#. From now on dimensionless 
quantities only are of interest, and the dashes are omitted. Equations (2.1) become 

where E = 912). Boundary conditions (2.2) become 

-x - - 
Q.. - --;,-- I 

f + O ,  u+O as y+co forallt, 

u = o for t < 0, u = 1, for t > o at y = 0.) 

When cos 01 is small some additional terms must be retained in the equations of 
motion. The flow may be treated as one-dimensional provided 

cos a > ( € R a p ,  (2.5) 

where Ra = wtL4/vs is the Rayleigh number, and L is the stratification scale 
height of the fluid (cf. Wunsch 1970). In  practice Ra is often very large. In  
the experiments described in $ 5  the Rayleigh number was of order lox8. The 
theory is valid until the plate is almost, but not quite, horizontal. 

3. The steady diffusion induced flow 
Wunsch (1970) and Phillips (1970) showed that there can be no state of rest in a 

stratified fluid above a sloping infinite plate. When the plate is at rest there is a 
flow in which convection and diffusion maintain the zero normal density gradient 
at the wall. 

New variables are defined by 

Y = d y ,  uo = p u ,  f o  = ?j+y, 
where 

In a steady state equations (2.3) become 

At times t < 0 the plate is at  rest. Conditions (2.4) for t < 0 become 

d fo /dY  = 1, uo = 0 at Y = 0, 

fo+O, uo+O as Y+m. 
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The steady solution, found by Wunsch and Phillips, is 

uo = 2+e-~/z*sin Y/s+, 
to = - 24 e-y/Z' cos ~ / 2 t .  

This solution, which also describes the steady stratified flow over a heated 
sloping flat plate, is due to Prandtl (1952, p. 422), and is also relevant to other 
thermal convection problems, such as the flow in a vertical slot (Elder 1965; 
Gill 1966). The Veronis (1967) analogy shows that this solution also describes the 
steady flow on a heated vertical wall in a rotating fluid (Barcilon & Pedlosky 
1967). 

The complete solution of the Rayleigh problem may be regarded as a super- 
position of two solutions, 

1 u = yuo+u*, 

f = r+fo +f *, 
where u* and f * are the solutions of (2.3) that satisfy the initial and boundary 
conditions 

u* = f* = 0 forall y for t < 0, 

u* = 1, af*/ay = 0 for t > 0, 

u.*+O, f * + O  as y+co for t >  0. 
(3.3) i 

In  practice the diffusion-induced velocity component is usually very small; 
typical velocities would be of the order of to 10-2mm/s in the stratified salt 
solution described in $5. If y < 1 the component yu, may be neglected in com- 
parison with u*. In  particular when a = 0 the Rayleigh problem has the solution 
u = u* and f =f*. Phillips (1970) pointed out that in a thermally stratified fluid 
the velocities induced by thermal diffusion would be much larger, and in a fluid 
with a stiable thermal stratification and a very small Prandtl number, such as 
mercury, the velocity could be large enough to generate turbulent flow. 

4. The superimposed unsteady flow 
Veronis (1 967) showed that there is an analogy between many stratified and 

rotating flow systems. The present problem has a rotating unstratified flow 
analogue when e = 1. Singh & Sathi (1968) obtained the solution for the flow over 
an impulsively started horizontal flat plate in an unstratified rotating fluid. The 
stratified analogue of their solution satisfies equations (2.3) with B = 1, and all 
but one of conditions (3.3); this condition specifies f * = 0 at y = 0 instead of 
af *lay = 0 at y = 0. The Singh & Sathi solution is a simple combination of error 
and exponential functions, but the zero mass flux condition at the plate gives a 
more complex solution. 

The solutions u* andf* are uniformly valid throughout the ( y ,  t )  plane for any 
value of 6, however small. Laplace transforms will be denoted by a bar: 
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where in this case $ denotes u* or f *. These satisfy transformed equations (2.3) 
and conditions (3.3), so that 

;ii* = [nz(ni - s) e-"iu- n,(ni - s) e-na*]/hs, 

J* = (n,e-lu-n,e-naY)/€hs, 

where n, and n2 are the roots of 

E n 4 - ~ n 2 ( 1 + 4 + ( 1 + s 2 )  = o 
which have positive real parts, and 

h = (n, - n,) (n; + nlnz + n: - s). 

The inverse transforms of U* andf* may be obtained by means of an integration 
around a suitable contour in the complex s plane. 

When e g 1 molecular diffusion affects the flow in a thin layer close to the plate 
only. The solutions in the outer non-diffusive and inner diffusive layers may be 
obtained by taking appropriate limits for U* and f* as s+O. The following 
matching method is used here instead. In  the essentially non-diffusive outer layer 
the solution may be expanded as a series: 

This outer layer is represented as region 1 in figure 2, where y/t* = 0(1) and 
t = O(1). If powers of €4 above the lowest, and terms exponentially small when 
e Q 1 are neglected, the lowest-order solution satisfies equations (2.3) with the 
diffusion term omitted. But the neglected exponential terms become significant 
in a layer y/tt  = O ( d )  close to the plate, however small e is. This diffusive layer 

Y = 

0 t=O(l) l / t=O(& t -  

FIGURE 2. The flow layer structure. Region 1, the non-diffusive layer y/t* = O( l) ,  t = 0(1) ; 
region 2, the diffusive layer y/t )  = O(d) ,  t = O(  1) ; region 3, the diffusive lrtyer y/t* = O ( d ) ,  
l / t  = O(e*). The layer y = O ( e f ) ,  where the diffusion-induced flow occurs, is bounded by 
the dotted line. 
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consists of the two regions numbered 2 and 3 in figure 2,  where t = O(1) and 
l / t  = O(&) respectively. Outside these three regions the solution is trivial: u* = 0 
and f * = 0. The lowest-order terms in the expansions of u* and f * in each region i 
are denoted by ui and fi, where i takes the value 1,2  or 3. These terms are matched 
(Van Dyke 1964, ch. 5) at  the boundaries between adjacent regions. No higher- 
order terms in the expansions are considered, as the lowest-order terms appear to 
show all the essential features of the motion. 

In  figure 2 the region y = O(& between the dotted line and the plate, repre- 
sents the layer affected by the steady diffusion-induced flow. 

4.1. T h e  outer non-diffusive region 1 : y/t* = O( 1)) t = O( 1) 

When y/t) = 0(1) the diffusion term in equations (2.3) may be neglected, but 
since 6he neglected term is a second-order derivative, the solution of the reduced 
equations cannot satisfy all of conditions (3.3). The zero solute flux condition, 
associated with the diffusion process, is omitted. The lowest-order terms u1 andfl 
in the expansions of u* and f * in region 1 satisfy 

aul/at = - f l +  (a2Ul/ay2), afl/at = ul, 

and conditions (3.3) reduce to 

u1 = fl = 0 for ally for t < 0, 

u1 = 1 at y = 0 for t > 0, 

ul+O, f l + O  as y-tm for t > 0. 

The Laplace transforms of u1 and fl are 

and the inverse transforms (Erdelyi et al. 1954) are 

where #(7) = + y ( n ~ ~ ) - t  exp ( - y2/47), and J ,  and J1 are Bessel functions of order 
zero and one respectively. 

When t is small, 4 [ 2 ( t 7  - T~)+] 21 1, so that u1 21 erfc (y/2t4). This is the solution 
of the Rayleigh problem when the fluid is unstratified. 

The integrals u1 and fl were evaluated numerically, and are shown in figure 3 as 
functions oft at  y = 0.8,1.1,1.6 and 3. The zero-velocity contour in the (y, t )  plane, 
shown in figure 4 (a) ,  divides the plane into regions of up- and downflow. Imme- 
diately after the start fluid at  all distances from the plate is convected with it 
through the action of viscous forces. Before t = 0.5 buoyancy forces have in- 
duced a reverse flow for all y > 1.4. The flow pattern thereafter consists of a 
region of upflow close to the plate and reverse flow further out. On this is super- 
imposed a slowly decaying oscillation with a period of 27~. For y > 2 the contour 
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sections in figure 4 (a)  are almost horizontal: the motion there is almost entirely 
oscillatory. 

Since u, = af,/at the fluid displacement d, is equal to f,. When u, is zero, d, is 
either a maximum or minimum. These maximum and minimum values of d, as 
functions of y are shown in figure 4 ( b ) .  The curve changes direction twice near 
y = 0.8. This corresponds to the kink in the zero-velocity contour in figure 4 (a). 
The cluster of curves at  the right-hand side of figure 4 ( b )  corresponds to the 
oscillations for y > 2. For clarity all except the first oscillation have been omitted. 

1 -2 

1 .o 

0.8 
-6- 

1, 0.6 
.= 
1, 0.4 
.-= 

0.2 

0 

- 0.2 

eL 

r(N 

FIGURE 3. The time-variation of (a) the velocity u,; ( b )  -, the densityf,; -.-, the 
density €-if,; - - -, the fluid displacement €-id3,  at y = 0-8, 1.1, 1.6 and 3. E = 1.2 x 10-3. 

The development of the shear, ( - aul/ay)y=o, with time is shown in figure 5. 
The shear decreases initially like the corresponding unstratified flow wall shear. 
As the reverse flow develops near t = 1,  the shear starts to increase and tends to 
infinity asymptotically like 2(t/7r)$. 

4 .2 .  The inner diffusive region 2 :  y/th = O(&), t = 0 ( 1 )  

The molecular diffusion term in equation (2.3) must be retained in the region 
y/t$ = O ( d ) .  In  region 2 define Y' = c-4~. Then u* and f * satisfy the transformed 
equabions (2.3), 

cau*/at = - q-* + (a2u*/aY'z), 

a f * p  = u* + (az f* /aY i2 ) .  

Ignoring terms of order B ,  the lowest-order solutions u2 and f 2  in region 2 satisfy 
the reduced equations 

a2u2pyi2 = 0, afi/at = u,+ (ay2/ar12), 
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subject to the conditions 

u2 = 1, afi/aY' = 0 at Y' = 0, 

and the matching conditions at  the region 1 boundary 

u2-  1, fi- t as Y'/t4+cO. 

Solutions satisfying these conditions are 

681 

u2 = 1, fi = t. ( 4 4  

8 n  

bn  

t 

4n 

2 n  

0 1 2 3 
Y 

FIGURE 4. (a) The zero velocity contour: -, zero a,; -.-, zero a$. ( b )  Maximum and 
minimum displacements : -, maximum or minimum d, ; - - - , maximum or minimum 
€- id3 .  6 = 1.2 x Experimentalpoints: 0, maximum fluid displacement; 0 ,  minimum 
fluid displacement, both in the direction of the plate motion. 

4.3. The subsequent $ow puttern. Region 3: y/t: = O(sb), l / t  = O ( d )  
New variables are defined by 

Equations (2.3) become 
5!l = sit, Y = €-a,. 

E ( ~ u * / ~ T )  = - df * + (a2~*/aY2) ,  

&(af */aT)  = U* + d(a2f*/aY2). 
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Since f2 = t ,  f * = O(s-4) in region 3. Thus the lowest-order terms u3 and s-4f3, in 
expansions of u* and f * in region 3, satisfy the reduced equations 

0 ' 1  ' I I I  I I I I  I I 
0.4 0.6 1 2' 4 6 10 20 40 60 100 200 400 

and 

o = -f3 + (a2u3/a P), af3/aT = u3 + (azf3/ay2) ; 

conditions ( 3.3) become 

up = 1, af3/aY = 0 at  Y = 0, 

u3+0, f3+0 as Y+w. 

The solution must be matched with the region 2 solution, so that 

u3w 1, f3 N T as T-tO. 

The Laplace transforms of u3 and f3, defined by 

are 

(4.3) 
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where XI = &( 2 + S)t  and S, = i ( 2  - S)t. The inverse transforms are represented 
formally by the Bromwich integrals 

A A B 
r. 

-1 0 
D A C 

FIGURE 6. The contour of integration, I?. 

B 

These were evaluated by means of an integration around the closed contour I? 
shown in figure 6. Both ;i13 and f 3  have simple poles at  S = 0 and - 1 in the 
complex S plane, and a branch point at S = - 2. The integrals around the con- 
tour r, 

are given by the residues at the poles at S = 0 and - 1 : 

The contributions to up and fr  from integrals around the small circle of radius r 
and the large circle of radius R, with centres at  X = - 2, tend to zero as r -+ 0 
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and R-tco. In  the same limits, as r-+ 0 and R-xQ, the contributions to t+ and f r  
from the integrals along A, the straight lines AB and CD, become u, and fA where 

(4.5) 
t+ l  c + 4  

- 
lJm 

e-(t+2)T 

(( ) ' ' cos r ] ,  sin q2 - n 0 ( t - + l ) ( t + 2 )  g+4 

where r] ,  = 4 Y@ and r ] z  = Q Y(4 + @. Then u, and f ,  are given by 

U3 = U r - U A  and f3 = f r - fA .  

The integral contributions (4.5) decay at least as fast as e-2T, while ur and f r  
consist of two parts: one decays as e-T, the other is the eventual steady-state 
solution um( Y )  and f m (  Y ) .  

1 .O 

0.8 

0-6 

0.4 
u3 

0.2 

0 

- 0.2 -0.2 1 Y 

FIGURE 7. (a) The velocity profile 2c3( Y ) ;  (b)  the density prof2ef3( Y) ,  
at T = 0.001, 0.01, 0.1, 0.5, 1 and co. 

The integrals u, and f A  were evaluated numerically, and profiles of u, and f 3  
are shown in figure 7 at T = 0.001, 0.01, 0.1, 0.5, 1 and 00. The matching con- 
dition (4.3) is satisfied: u,+l and f 3 + 0  as T+O. As T increases from zero a 
reverse flow region develops and moves towards the plate; further regions of up- 
and downflow appear, and the flow tends towards the steady state represented 
by the T = 00 profiles. The fluid displacemenb d, is defined by 

d, = loTu,dT. 

When T < 1 the solute concentration is only slightly affected by molecular 
diffusion. The d, and f, profiles are almost coincident, so that separate d, profiles 
are not shown. BuO the density gradients gradually steepen, and molecular 
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diffusion increasingly affects the solute concentration in the flow layer, so that 
d3 and f 3  diverge. In  the limit, as T-+co, f 3  tends to a constant value while d3 
tends to infinity. 

It is of interest to compare the region 1 and region 3 solutions on the same time 
and length scales. For this purpose the particular value of E chosen was 

E = 1.2 x 10-3, 

a value appropriate to the diffusion of salt in water under the experimental 
conditions described in $5 .  In  figure 3 ( b )  df3 and e-*d3 are compared with fi, 
equal to d,, at y = 0.8,1.1, 1-6 and 3. Corresponding curves lie close together, and 

0.4 

0.2 

0 

t 

4n 5 n  I 

- 0.2 

FIGURE 8. The time-variation of: -, u,; -.-, u3, at y = 0-8 and 2. E = 1.2 x 10-3. 
Experimental points: 0, 0.76 < y < 0.85; 0 ,  1-9 < y < 2.1. 

ib appears that s-*f3 represents a 'mean' value about which f, oscillates. Corre- 
sponding values of u1 and u3 at y = 0.8 and 2 are shown in figure 8. When 
5 < t < 20 the contours of zero u1 and us, shown in figure 4 (a) ,  are almost coinci- 
dent close to the plate. Further from the plate the oscillatory part of u1 is at least 
as large as us, and the contours are unrelated. The maximum and minimum values 
of d1 and €-id3, which are associated with the zeros of u1 and us, and are shown in 
figure 4 ( b ) ,  are almost equal close to the plate, but are more widely separated 
away from the plate and at  later times. Diffusion affects the motion only after a 
considerable time. 

The unsteady contribution to the wall shear -c-~(au,/aY),,,, shown in 
figure 5,  tends towards a constant value Z*E--* as T e a .  When 4 < t < 40 the 
solutions valid in regions 1 and 3 give almost identical values of the wall shear. 
Thus even close to the wall, where diffusion effects are expected to be most 
apparent, diffusion does not seriously affect the shear at least until t = 20. 
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5. Experiments 
A glass-sided tank, which was 160 em long, 90 em high and 55 em from front to 

back, was filled with a stratified salt solution having a constant density gradient. 
Mowbray (1967) described how the tank was filled. A vertical glass plate spanned 
the tank from front to back, and was immersed in the fluid with its upper edge 
above the free surface and attached to a towing device. The plate was towed 
upwards at various speeds between 0.2 and 1-6 mm/s. It could travel up to 25 em, 
guided by vertical rails mounted inside the tank at  the centre of the front and back 
faces. The flow layer was at most 2-3 mm thick. Observations were made at least 
15 em below the free surface, 5 ern from the front; glass wall, and 5 em above the 
lower edge of the plate. These distances seemed to be sufficient to eliminate wall, 
surface and trailing edge effects, and only slight deviations from one-dimensional 
flow were seen. These small transverse motions were probably more apparent 
than real, resulting from refractive index variations in the fluid. 

Aluminium dust in suspension was introduced into the tank at the surface 
about 6 h before experiments were due to start. During this period heavy particles 
sank to the bottom, leaving particles, small compared with the flow layer thick- 
ness, falling at about mmls. Flow velocities were obtained by subtracting 
the average particle fall velocity immediately before the impulsive start from 
subsequent measured particle velocities. The inertial velocities of particles 
relative to  the fluid were probably very much smaller and were neglected. A cine 
camera attached to a long-focal-length microscope was used to record particle 
motions for subsequent analysis. The distance from each particle to the plate was 
obtained by halving the apparent distance between the particle and its reflexion 
in the glass surface of the plate. 

The dimensionless parameter U2/uw, took values between 0.03 and 2, and e was 
approximately 1.2 x 10-3. The Boussinesq approximation, assumed in $2,  
remained valid during the experiments, and density variations never became 
comparable with p .  The relative density variation in the eventual steady state, 
which was of the order of KlJ/(.w,,peh), never exceeded 10-2. All measurements of 
times, distances and velocities were made dimensionless for comparison with the 
theoretical values. 

In figure 8 experimental values of the fluid velocity at y = 0.8 and 2 are 
presented, together with the two theoretical solutions u1 and u3. The experi- 
mental velocities are scattered, partly because they could not be measured 
instantaneously, and the transition from one solution to the other in the range 
6 < t < 20, where u1 and u3 are close, is not clearly shown. Points of zero velocity 
are shown in figure 4 (a) ,  and the maximum or minimum displacements associated 
with these zeros are shown in figure 4 (b ) .  The position, time and displacement 
associated with the first velocity zero compare favourably with the theoretical 
values. During the second and third oscillation fluid velocities were small, but 
zeros appear at least within the right region of the (y, t )  plane. 

The last graph, figure 9, shows the steady-state velocity profile, which de- 
veloped about 60 s after the start of one particular run. Refractive index varia- 
tions in the fluid seriously affected measurements of the particle-to-plate distance 



T h e  Rayleigh problem for a density-stratijied fluid 687 

at this stage of the motion, because density gradients were at their steepest. 
Particles appeared to be closer to the plate than they were. The dotted curve in 
figure 9 is the expected apparent position of the theoretical velocity profile, as 
seen by an observer outside the tank. Known values of U ,  o,, and E for that run 
were used, and refractive index variations were assumed to depend linearly on a 
density given byf, =fa( Y) .  A light path equation given by Rossi (1959, p. 56) 
was integrated numerically through the flow layer to give mean apparent posi- 
tions of a particle and its reflexion in the plate, and hence the apparent particle-to- 
plate distance. During the early stages of each run this apparent particle dis- 
placement was small, and has been neglected. 

FIGURE 9. ~ , the steady velocity profile u, ( Y )  ; - - -, the expected apparent position 
of urn( Y) because of refractive index variations. 0, experimental points. 

6. Conclusion 
A slow steady diffusion-induced flow occurs on a sloping flat plate at  rest in a 

density-stratified fluid. The impulsive start of the plate sets up oscillations in an 
outer non-diffusive viscous flow layer at the natural frequency, wo cos a, of fluid 
particle oscillations at an angle a to the vertical. These oscillations die out slowly 
through viscous action. After a time O(ef wo cos a)-l a steady flow develops in a 
diffusive layer of thickness O( [ve*/(wo COB a)]*). In this layer convection and 
diffusion maintain the steady density distribution, and viscous and buoyancy 
forces maintain the flow. 

Phillips (1970) mentioned an experimental situation where a few of these 
results may be applied. When he inserted a flat plate into a tank of stratified salt 
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solution, where wo was about 4 rad/s, he noticed that the transient motions died 
away within a few seconds. Suppose that a laminar steady flow, of the type 
described in $4.3, developed before the plate came to rest. The solution de- 
scribing the flow past an impulsively stopped pIate is simply the difference 
between the initial steady solution and the unsteady contribution to the solution 
describing the flow past an impulsively started plate. Thus transient motions 
should have died away in a time of order (s?tw0)-l, or less than 10 s after the plate 
came to rest. 
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